Convex Algebraic Geometry of Curvature Operators

نویسندگان

چکیده

We study the structure of set algebraic curvature operators satisfying a sectional bound under light emerging field Convex Algebraic Geometry. More precisely, we determine in which dimensions $n$ this convex semialgebraic is spectrahedron or spectrahedral shadow; particular, for $n\geq5$, these give new counter-examples to Helton--Nie Conjecture. Moreover, efficient algorithms are provided if $n=4$ test membership such set. For using semidefinite programming obtained from hierarchies inner approximations by shadows and outer relaxations spectrahedra.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four-Manifolds, Curvature Bounds, and Convex Geometry

Seiberg-Witten theory leads to a remarkable family of curvature estimates governing the Riemannian geometry of compact 4-manifolds, and these, for example, imply interesting results concerning the existence and/or uniqueness of Einstein metrics on such spaces. The primary purpose of the present article is to introduce a simplified, user-friendly repackaging of the information conveyed by the Se...

متن کامل

Non-Convex Optimization via Real Algebraic Geometry

The high level purpose of this paper is to describe some recent advances in the field of Mathematics called Real Algebraic Geometry, and discuss some of its applications to complexity theory, and non-convex optimization. In particular, one of the questions underlying the entire development, is the crucial question: What makes an optimization problem difficult or easy? Along the way, we try to p...

متن کامل

Real Algebraic Geometry in Convex Optimization

Real Algebraic Geometry in Convex Optimization

متن کامل

Angular Momentum, Convex Polyhedra and Algebraic Geometry

The three families of classical groups of linear transformations (complex, orthogonal, symplectic) give rise to the three great branches of differential geometry (complex analytic, Riemannian and symplectic). Complex analytic geometry derives most of its interest from complex algebraic geometry, while symplectic geometry provides the general framework for Hamiltonian mechanics. These three clas...

متن کامل

ALGEBRAIC GENERATIONS OF SOME FUZZY POWERSET OPERATORS

In this paper, let $L$ be a completeresiduated lattice, and let {bf Set} denote the category of setsand mappings, $LF$-{bf Pos} denote the category of $LF$-posets and$LF$-monotone mappings, and $LF$-{bf CSLat}$(sqcup)$, $LF$-{bfCSLat}$(sqcap)$ denote the category of $LF$-completelattices and $LF$-join-preserving mappings and the category of$LF$-complete lattices and $LF$-meet-preserving mapping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Algebra and Geometry

سال: 2021

ISSN: ['2470-6566']

DOI: https://doi.org/10.1137/20m1350777